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INTRODUCTION

Positron emission tomography (PET) is a growing technique for medical
diagnosis, Special purpose machines have been developed that achieve good
resolution in two-dimensional (2-D) slices of the head or abdomen with
relatively intense radicvactive sources. The emphasis on these specialized 2-D
devices seems to have been driven by computational advantages of
reconstruction as much as by medical need. However, the original PET geometry
of 2 planar Anger cameras (1) continues to have application if the emitter
object is large or irregular in shape, or otherwise fails to fit the 2-D
devices, Reconstruction of full 3-D images lhas been reported by many authors
(2-8). However, these methods have limited ability to deal with low counts
(6), or to use the full data set (2,3,8).

Recently, a 2-D PET reconstruction method has been described by Shepp and
Vardi that uses maximum likelihood (ML) (9-11). That general statistical
approach allows one to use all available physical knowledge to reconstruct an
image that has the highest probability of generating the actual data set.
Attempting such an optimization is a formidable process since each of the
thousands of volume element intensities is an unknown random variable that
co-varies with each other. The expectation-maximization (E-M) (11,12)
algorithm for likelihood maximization has been shown tc possess many desirable
statistical and practical aspects that allow approach to ML estimates in
reconstruction tomography (9-15). The problems with Fourier inversion
artifacts such as negative estimated activity (16) is avoided, and all
available data can be used. In 2-D devices, the ML formalism has been
extended to efficient recovery of regions of interest (17) and to estimation

of kinetics from a time sequence of images (14,15).




Here we report application of the ML approach to the full 3-D problem.
We were motivated by a study attempting to estimate the distribution and

kinetics of 13

N2 gas in human divers (related to mechanisme of decompression
sickness) over time spans of many isotope half-lives. Thus, our application
had vanishingly low count rates from a complex emitter with high activity in
areas not of interest (18). In this paper we first poce the general problem,
specify the reconstruction procedure, and then examine the algorithm
performance with a series of simulated images. These images include a sinple
set of large rectangular solid modules, a complex emitter similar to a human
experiment (18), and the complex emitter with added instrument noise (19).
Performance is assessed by several statistical measures as well as by image
appearance. A brief comparison is made to an algorithm proposed by Lim et al.

(5,20), which is called iterative Weighted Backprojection (WB).

Reconstruction Geometry and Algorithm

The acquisition device is a pair of large (40 cm diam), stationary Nal
crystals with parallel planar surfaces outside the emitting source, and
connected in coincidence (21). Photons satisfying an energy ana coincidence
criterion trigger an A/D converter to sample and store a pair of coordinates
from both the A and B camera detectors (coordinates called Xa, Xb, Ya, Yt).
Calibration of the device is a problem discucsed elsewhere (19), but
calibration and camera performance parameters can be included in a ML
algorithm; below, we show that they can seriously affect an image.

To organize the problem by the Shepp-Vardi approach, we first discretize
the original data according to which X-Y area element on each camera face the
photons arrive from. In practice, we use areas 1.33 cm on a side (a 32 x 32
square grid slightly circumscribes the circular area.) Although there is some

controversy about the effect of early discretization (16,28), the limited




resolution seems to justify this step. (The actual spatial resolution of any
detector depends on counting statistics, and our choice of resclution elements
should be considered essentially arbitrary). Each combination of an area on
one camera face with an area on the other is termed a detector "tube', d, in
order to use the Shepp-Vardi nomenclature. 1In 2-D applications, ¢ech of thesce
tubes correspond to a physiral detector. The total number of such tubes, I,
is quite large: 32A ~ 106 in our application, so most tubes actually have
Zero events,

The "image'" is also discretized into a uumber of boxes, b, set on a
rectangular grid. We use the same X-Y grid as for the detector tubes aud a 4
srid of 8 boxes deep between camera faces. With the 45.6 camera face
separation in our experiments, the Z-direction boxes are then 45.6/6 = 5.7 cu
high. This choice acknowledges the relatively poor Z-direction resolution
that is inherent in the device that does not sample events emitted at a large
angle from the camera axis (1). The total number of boxes in the image, B, is
therefore 32 x 32 x & or about 8000. (In practice, we place the cylindrical
imaging space image within the square array so only 6,038 boxes can be part of
the image).

The reconstruction problem can now be posed: estimate the B random
variables L(b), the emitter density in each box, given the data set n(d), the
recorded number of events in each detector tube. The maxirum likelihood
estimate of this problem is the set of L's that maximize the overall
probability of achieving the actual recorded data set. Derivation and
properties of the mathematical problem are not presented here; the reader is
referred to the excellent presentations of Shepp and Vardi (9-11) and of Lange
and Carson (12). 7The likelihood function, f, of the data, n, giveun the

current emission parameter estimates, L, can be constructed by using the
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Poisson distribution on emissions from each box (10):

D

f(n L) = }: [ -L(d) + n(d)«In{L(d)} - 1n{ n(d)! } ] [1]
d=1

where:

B
L({d) = 2:: L(b)+p(b,d)
b=1

The final term in Eqn. [1) does not depend on the estimated emission
parameters, L, and can therefore he ignored. EFEach term p(b,d) is the
prctability that a positron emission from image box, b, will be recorded in
detector, d. This matrix incorporates aspects of both physics and detector
performance, which can change in different applications. Shepp and Vardi
applied the expectation-maximization (E-M) approach to achieving a ML estimate
(9-12), and obtained the following algorithm:

D

§ t n(d)-p(b,d)
L(b)new = L(b)old. [2]

- B
= E L(b") 4 Pb"5d)
b'=1

where b =1, 2, 3, ... B
The outer summaticu in Fqn. [2] is over all possible tubes; the inner sum in
the denominator is over all the boxes, B', which have a finite p(b,d) for the
specific tube, d.

Since this is an iterative procedure, an initial set of L(b) must be
provided. The E-M algorithm has been proven as monotonically convergent
(11,12), so in principle any nonzero starting image will eventually lead to
the ML image. For convenience, we chose a value for each box equal to the
average intensity of the entire data set (i.e., a uniform gray image). Some
increase in the rate of convergence appears possible by starting with a better

initial image (16), such as from a backprojection procedure.




The large p(b,d) matrix is the key item that incorporates the physical
and instrumental characteristics of a given detector and emission source.

kach term is actually a compound probability:

p(b,d) = pl(b,d)-p2(d) / p(b) (3]
where:
pl(b,d) = p(emission from b enters detector tube d)
p2(d) = p(tube d is recorded)
p(b) = total probability that emission from box b is recorded

in any detector
The second facter in Egn. [3], p2, is a solid angle consideration depending
only on the tube itself, which in this geometry is proportional to cos3 (a),
where « ic¢ the angle between the tube direction and the camera axis (line
connecting the centers of the 2 detectors). A further correctioun is used for
tubes that fall zlong the circular perimeter of the camera face: the 2nd
factor is multiplied by the fraction of the tube area contained within the
detector. This sharp edge cutoff seems to be responsible for some of the edge
artifacts seen in the images. Point-to-point non~uniformities across the
camera face (determined by flood source images) could also be included in
p2{(d) at an increased computational cost. The denominator in Eqn. [3] 1is the
overall probability that an emission from box b is detected anywhere on the
detector, and is proportioral to the camera spatial efficiency (22).

We have used two different choices for the first term, pl, of the p(b,d)
matrix elements. The simpler p(b,d), "Clean p(b,d)", uses the volume
intersection of box b with tube d similar to the original approach of Shepp
and Vardi (9,10). Such a choice uses assumptions of uniform emitter density
in cach box, no scattering of photons, no attenuation, and a perfect detector

response.




For our more complex p(b,d), some of the camera performance degradation
already reported (19) are included. Both photon scattering and digitization
problems have been found to contribute to a blurring of a point svurce image
even when the emission plane is known a priori. Specifically, the
distribution of events in the emission plane (established by simple
backprojection) is well-described by a normal distributicn superimposed oun a
low=-level uniform density (19). Typical parameters are a standard deviation
of 2 cm and a uniform density of 15% of the events. Therefore, our sccond
p(b,d) allows events in tube d to have arisen from many surrounding boxes
located up to 3.5 box units away from the tube axis. The weighting of pi is
proportional to the normal + uniform distribution cut to the distance where
the distribution has fallen to 3% of its peak. This approach is clearly only
an approximation to the actual physics because not all, probably not even
most, of the spatial degradation happens in the plane of emission. However,
it was computationally possible, therefore allowing a calibration procedure
(19) and the image reconstruction to be performed with internal consistency.
We will refer to this as the "Fuzzy p(b,d)."

The reconstruction is computationally intensive. The total p(b,d) matrix
allows over 108 entries, which we found impractical for storage, though using
the full matrix has been explored by others (13). For each data set, we first
rearranged events in a structured order by tube direction. This allowed us to
only examine tubes with nonzero activities that are slightly less than the
total events in the data set. Then at each iteration of Eqn. [2], first the
term p2(d), then the pl(b,d) in Eqn. [3] was calculated for each family (same
angle a) of tubes. The acnominator, p(d) in Eqn. [3), was calculated only
once by summing the numerator of Eqn. [3] for each box over all tube

directions, then retrieved as necessary from a storage array.




We also compared some reconstruction with the iterative Weighted
Backprojection method (WB) proposed by Lim et al. (5,20). In the WB method,
each event is partitioned into all boxes intersecting the detection tube with
a weighting proportional to the box activity 1.(b) estimated on.the previous
iteration. Unlike most Fourier transform methods, all data can be used and
the estimated L(b) are intrinsically non-negative. As in the original work
(5,20), we used simple planar intersection rules (at the Z-direction
mid-points of the same tomographic planes) instead of more complex rules for
box-tube intersection. In all cases, we applied a camera spatial efticiency
correction between each iteration.

Simulation Procedure

Spatial locations in all three dimensions for the simulation were in the
precision of our camera's ADC unit: 0-127 units ~ 0.3 cm/unit. Each defined
positron emitter object was rectangular with all boundaries matched to edges
within the 32 x 32 x 8 reconstruction matrix. The simulation process used a
hierarchy similar to our view of the emission physics. Each rectangular
object volume was multiplied by its emission density (an integer from 1 to 60)
in order to obtain a scalar proportional to the chance of an emission actually
originating in that specitic rectangular object. The first randomization used
this scalar to choose which rectangular object the current emissiorn came from.
The next 3 random numbers established the X,Y,Z location within the
rectangular object for the simulated emission. A spherically uniform
direction was generated to simulate emission of the annhilation photoms. The
intersection of this direction with each camera face was calculated to see
whether the event was '"recorded" by the camera. The fraction of emissions

recorded is proportional to the overall camera spatial efficiency for this
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rectangular box, p(b) (22). The simulated data from this process we call the
"Clean Sim."”

To deal with camera calibration performance and scattering in the
simulation, two additional features were added to cause the simulated event to
be placed irn the "wrong" tube. A Gaussian error of specified SD in a random
direction was applied at each camera face for every intersecting event. In
addition, every 7th event was placed at a uniformly random location within the
camera A/D range to simulate the "white noise" component of camera performance
(19). These data were termed the "Fuzzy Sim."

A DEC pseudorandom number generator giving a uniformly distributed
variable was used in all these processes (23). Standard transformations (24)
were applied to get uniformly distributed angles and normal deviates when
needed. The process was checked by simulating some point sources and
comparing detection efficiency to am analytical expression for efficiency
(22). The simulations required about 16 min per 10,000 detected events on a
PDP 11/70. Programs were set to stop upon arrival at a predetermined total
number of detected events (from 2,000 to 100,000). An auxiliary output file
recorded the total events actually emitted from each rectangular box, S(b).
This simulated image could then be used to assess the performance of
reconstruction. Because of the high computational cost, simulations were
generally not repeated.

In addition to likelihood itself, we assessed image recovery by a root
mean square error (rms) and a weighted root mean square error (wrms) based on
simple or weighted sums of squared deviations. These measures require a known
image for comparison and thus are useful only for simulation, not for unknown

objects.
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B
wms =) 1/B [Lk) - sy ]2 12 [4]
bel
B
} : [ L) - sy 12\ 172
wrms = 1/B {5]
b=1 [ Max (S(b)sl) ]

As before, the L-array contaius the recpvered emissior density, while the
S-array has the actual simulated density. The rms is an average deviation
from the simulated image in counts per box. The wrms is an attempt to account
for one kncwn major source of uncertainty in a real image: Poisson counting
statistics, For each independent Poisson process, such as the emissions from
one box that is detected at all, the expected precision (standard deviation)
of that ccunt can be used for weighting error summaries. For large counts,
Poisson standard deviation is the square root of the raw count. (ln Eqn. [5]
the denominator is the square of this expected standard deviation.) We
realize that for a simulation the use of this formula is not precise, both
because of low counts where the square roct is not a good approximation, and
becavse we know S(b) exactly after the Poisson uncertainties of emission and
detection have occurred. Subject to these limitations, the wrms is used as an
average dimensionless error per box, where wrms = 1.0 would be image recovery
to the expected limit of counting statistics. A wrms error much larger than
1.0 mears more variability than in the simulation. A wrms error much smaller
than 1.0 means the algorithm is "too precise" in attempting the
reconstruction. Image recovery more precise than the original simulation has
recently been noted with the E-M algorithm in some 2-D reconstructions

(28,29).




SIMULATIONS and RESULTS

Simple Object

The objective for using this first object was examination of how the
reconstruction algorithm would recover object boundaries, especially when
using small total count numbers. A secondary objective was development of a
battery of test statistics to describe image recovery. Figure 1l is a sketch .
of the simple object simulated. The object was a set of 10 large modules, 9
to 91 boxes each; adjacent modules were simulated to have intensity contrast
differences of about 2 going in both X and Z directions. In addition, a large
low-intensity object (module G in Fig. 1) was used to add out-of-focus events
that would complicate the reconstruction of modules in the next Z-plane
(modules H,I,J). No part of the modules extended into the Z-planes closest to
each camera face (levels 1 or 8). Three sets of simulations were done with
2000 to 50,000 total counts to span the count range of 4 to 659 counts per
individual box. Simulation was "clean", that is without inclusion of the
camera degradation. The reconstruction only used the first of the p(b,d)
methods described above (Clean Recn: no error from camera).

Performance ot both the ML and WB reconstruction algorithms for this
simple object are shown in the next several figures. All 8 levels of the
original 50,000-count simulated object and the 50th iteration by both
reconstruction methods are shown in Fig 2. All images have been corrected for
camera efficiency by dividing each box count by p(b) such that the center
boxes have the actual count at each level, and boxes extending out radially
have a progressively exaggerated count, The edges are successfully recovered,
but with less blurring for the ML procedure than for WB. Very few of the
counts are distributed outside the boundaries of the original objects. Any

counts assigned to levels 1 and 8 are erroneous as no source locations were

10




SIMPLE OBJECT
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Figure 1.

Simple Object Sketch., The 10 large modules (9 to 91 boxes each)

were simulated to have intensity contrast differences of about 2
going in both X and Z directions, The large low intensity object
(module G) was used to add out-of-focus events to complicate the
reconstruction of modules in the next Z plane (modules H,I,J). No

part of the modules extended into the Z planes closest to each

camera face (levels 1 or 8).
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simulated there. Recovery of detail is slightly better in mid levels than
close to either camera face. Note also a bit of increased "graininess"; the
individual boxes have more apparent variability about their mean intensity
than was simulated in the original object. The occasional speckle in the
outer corners of the images i» a reconstructed box density that has been
amplified by the efficiency correction whose magnitude is greatest in the
corners,

Recovery with successive iterations are presented next. As shown in the
top of Fig. 3, overall likelihood improved substantially for the first 20
iterations of the ML algorithm, Eqn. [2], and only slowly thereafter. Scme
finite improvement was noted even after 200 iterations. Log likelihood
differences less than order ! are not important in statistical applications
with few parameters, so image improvement after 20 to 50 iterations appears
marginal., The likelihood stabilizes with little subsequent improvement in
later iterations with smaller data sets. Thus, an arbitrary rule ter
declaring the "convergence" of the final image would be needed. This stopping
rule was examined for all the simulated reconstructions. The WB method
produced images that initially improved as measured by likelihood but then
decreased in likelihood. The decrease occurred on later iterations in data
sets with higher total number of events in the image.

In the bottom of Fig. 3 are plots of both rms and a wrms errur for the
simple object. The figure shows that these criteria improve (i.e., decrease)
with subsequent iterations using ML, but very slowly 1ifter 20 iterationms,
Curves that show an initial rise indicate that early iterations produce images
with poorer statistics than the original, uniformly gray initialization.
Weighted rms error was always less than raw rms, and eventually decreased to

about a factor of 3 higher than the "perfect" value for a Poisson process. In

13




INCREASE IN LIKELIHOOD PER ITERATION
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Figure 3.
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plotted against increasing iterations of the reconstruction

algorithms.
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other cases with fewer total events, we noted that the rms and wrms errors

passed through a2 minimum and then increased with subsequent iterations. This
means that the image originally got better by all criteria, then the image
improved by ML while becoming worse by the rms and wrms criteria. The WB
method stabilized within 15 iterations, but had more than a four-folc poorer
performance than ML after image convergence,

For this image, all reconstructions were rather successful in avoiding
assignment of events to the planes (simulated as empty) nearest the canmiera
face. For example, at 30 iterations less than 3% of the ML reconstructed
counts and 5-6% of the WB counts fell in the empty planes. Subsequent
iterations decreased the traction even lower.

Individual object recovery and the graininess problem were examined in
more detail., Module H in Fig. 1 was chosen as the example in Fig. 4. This
level may be most susceptible to corruption because of the large distributed
object immediately above it. The upper half of the figure shows recovery of
average counts for the 9 boxes in that module., Using ML, only 50% of the
original counts are recovered for the lowest count rate sirulated, but over
95% recovery is achieved for higher count rates. Recovery of counts using WB
was poorer in all cases. (Both reconstruction methods conserve the total
number of counts, so the "missing" counts from recoveries less than 100% are
assigned to other boxes, most of which were simulated as empty.) The bottom
half of the figure is a measure of "graininess", obtained from the standard
deviation ot L(b) over the module. The standard deviation ot reconstructed
counts in the module has been normalized by the standard deviation in the
original simulation so numbers greater than 1 represent more box-to-box
variability or “graininess" than in the original module. By 10 iterationms,

the graininesss had exceeded the variability in the simulated module. The
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images got progressively more grainy for the next 50 or so iteratioms, even
though the likelihood function was showing a slow improvement (Fig. 2, Top).
If reconstruction was stopped at the point of original graininess, then other
desirable f?atures of the reconstruction would be sub-optimal, This feature
has been recognized as a drawback to ML, perhaps intrinsic to the methcd
(15,28), and other recent work addresses means to avoid the problem (25,29).
Our approach, like others, is to stop the reconstructicn at a finite number of
iterations. Other areas (not shown) had the same general result: both
recovery of counts and graininess increased with successive iterations. Low
count rate modules had poorer recovery and increased graininess.

An examination of the recovery of counts in the 170 individual boxes for
each simulation also supported the impiessions just described. For low
intensity emission, average recovery is low (average 28% recovery for boxes
emitting 3-20 counts); for intermediate activity recovery is better (average
66% for 21-100 counts); for high activity average recovery is excellent
(average over 90% for 100+ counts). We also compared the distributiorn of
recovery and compared it to that expected for a Poisson noise-]imited process.
Specifically, we calculated bounds of double the Poisson emission error on
S(b) with the expectation that approximately 90% of the boxes should be
recovered within that band if the reconstruction itself added no image noise.
Recovery within that "90% band" did not seem to depend on emission density,
and overall only about half of the boxes were recovered within the band.
Thus, the image noise has a component greater than intrinsic Poisson noise.

Computation times were quite different for the two algorithms. The WB
method required about 4 min per 10,000 counts per iteration, while the ML

method took 55 min for the same task on a PDP 11/70. Using the Fuzzy p(b,d)

17




was another three-fold slower and required us to use a CRAY XMP-2 to complete
the project.

To summarize, initial exploration of the ML algorithm with this simple
object was a success. The intensities in the image boxes were recovered
within 502 or better despite the low count rates, and the statistical
properties of the reconstruction were considerably better than the WB
algorithm.

Complex Object Simulation

The other mathematical phantom was considerably more complex. For our
application in experimental physiology (18), we needed to simulate a portion
of a human body with a shoulder, parts of a head and trunk, and a hose that
delivered radioactive nitrogen gas to a mouthpiece. The purpose was to study
gas delivery to non-gas tissues, such as the shoulder joint implicated in
diver decompression sickness. The mathematical phantom for this case used 37
rectangular modules of various sizes. As in the simple object, no emissions
occurred in the Z-levels immediately adjacent to the camera face. Since
nitrogen solubility in human tissue is rather low (26), the simulated hose and
mouth were set to emit at a sixty-fold higher intensity than tissue; and the
simulated lungs and trachea at 40 times the tissue level. Together these gas-
filled areas accounted for slightly over 90X of the total simulated emissions.

The objectives here were to apply the insights and measures developed
above to build a reconstruction scheme useful in our difficult application:
complex emitter, low counts, data dominated by presence of non-interesting
objects, and camera performance degradation. We present 3 cases of about
50,000 events: simulation without camera degradation and p(b,d) defined as
tube-box volume intersection ("Clean Sim, Clean Recn"); simulated data with

camera degradation, but with the simple p(b,d) ("Fuzzy Sim, Clean Recn"); and
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the same degraded data but with reconstruction using the less well localized
p(b,d) ("Fuzzy Sim, Fuzzy Recn"). These data were not examined with the WB
algorithm,

The original object and the reconstructed images are shown in Fig. 5.
For orientation, the view is of a supine human. The gas delivery hose goes
across level 7 and connects to a mouthpiece in levels 5 and 6. The lower
right sections of the subject's head is in the upper right quadrant of levels
3~5; his trunk tc the right shoulder covers the lower half of levels 2-4., 1In
the simulation, no activity is simulated in levels 1 or 8. The highest
activity corresponds to the simulated mouth and hose in levels 5-7. Nearly as
high activity is in the simulated subjects' lungs and airways in levels 3 and
4, The object of our physiological experiment is recovery of activity (and
kinetics) in the non-gas lower activity regions mostly in levels 2-4. The
images reconstructed for the 3 treatments of image degradation are also in
Fig. 5. All reconstructions have some degree of inappropriate assignment of
activity to levels 1 and 8; all recover much of the high activity regions in
levels 3-7; and all have some activity assigned to the desired regions in
levels 2-4. These features will be compared in more detail below.

Other visual aspects of the images deserve comment. All reconstructions
have high-activity speckles and '"rings", especially in levels 1 and 8 of
Fuzzy-Clean., The magnitude of the problem has been exaggerated by the image
normalization procedure used, since this device has a spatial sensitivity
that drops sharply along the outer circumference cf the detector and more
gradually toward each camera face (22). To avoid this efficiency gradient
dominating the image appearance, we divide all box activities by the local
efficiency; the procedure introduces a modest correction in the center of the

camera but is a large correction along the outer circumference. Thus, the
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information content along the outer edge is intrinsically low and activity in
these regions should be ignored in quantitative interpretation despite its
striking visual appearance.

Another visible problem is the anticipated poor resolution in the Z
direction (along camera axis). The problem is most easily seen as the "shine"
of hose uctivity simulated in level 7, but partially recovered in levels 6 and
8. It appears to a lesser extent in the lung regions of levels 2-5. The
Fuzzy simulations are worse than the Clean Sim. We noted that the problem
slowly improved with successive iterations for each case, but even 100
jterations in Fuzzy-Fuzzy did not eliminate the shine entirely.

Ir all images there appears to be a speckle pattern through regions that
were simulated as homogeneous activity subject to Poisscn noise. A major part
ot that is the deliberately low activity compared to many positron images that
us2 a thousand-fold higher activity. (Note: the gray scale chosen has
maxinum contrast near 50 counts per box, an activity certainly subject to
appreciable Poisson noise.) Although no specific smoothing operations were
applied to these images, it is clear that the Fuzzy reconstruction produces a
smoother image. The Fuzzy-Fuzzy appears smoother in the low count regions as
well as the higher activity. However, there appears in all images to be a
graininess problem that will be examined in more detail below.

Specific performance features of the recoustruction will now be examined,
starting with the likelihcod function itself. As in the other simulation and
in other applications of the E-M algorithm, the likelihocd function improved
rapidly in the early iterations as seen in the top of Fig. 6. Improvement
thereafter was ever more gradual. The Clean-Clean image converged to a stable
likelihood fastest; that is, it had a large improvement in likelihood in the

early iterations, but could only make small improvements by iteration 50.
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This favorable behavior might be expected for a process without the
anbiguities in source added by the Fuzzy processes. By comparison, for both
fuzzy images there was a smaller improvement in likelihood initially followed
by a more sustained increase of 1-10 units per iteration even after 30
iterations, thus showing a slower convergence. Since both Fuzzy-Fuzzy and
Fuzzy-Clean have the same data, it is possible to compare absolute values of
the likelihood functicv itself by direct use of Fqn. {[1]. The very slowly
cenverging Fuzzy-Fuzzy produces a likelihood pourer by 3,342 units at
iteration 50. Thus, the Fuzzy-Fuzzy reconstruction is statistically poorer
overall thar Fuzzy-Clean at that point (this difference is 0.55 per box so we
are not certain that the difference is very significant). Since the rate of
Fuzzy-Fuzzy convergence is so slow, it seems possible that "eventually", when
a maximum likelihood is achieved, the Fuzzy-Fuzzy might be a statistically
superior image. Unfortunately, that point did not appear practically
attainable, as another 50 iterations on Fuzzy-Fuzzy only attained 1/20 of the
ljkelihood discrepancy. Overall, we have the impression that the rate of
«onvergence decreascs with the complexity of the reconstruction preocess. With
the same amount of data, the simple object was reccnstructed faster than the
complex object and the Clean p(b,d) converged faster than the Fuzzy p(b,d).
The lower secticn of Fig. 6 shows the rms error criteria for the 3 cases.
In all 3 cases the rms improved markedly in early iterations, while wrms
increased before establishing a slow improvement. It appears that the E-M
algorithm corrected major deficiencies in the high count areas before settling
intc a slow correction over all boxes. Again Clean-Clean had the best
behavior, decreasing both the unweighted and weighted statistics with
successive iterations, and achieving the lowest values of both statistics.

Fuzzy-Clean improved its rms error for 10-20 iterations, then had no further
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change. As with the rate of convergence by likelihood, Fuzzy-Fuzzy had the
poorest performance by actually increasing its unweighted rms error after 20
iterations. The divergent trends of rms and wrms errors implies a differénce
due to the weighting. Specifically it appears that for the Fuzzy-Fuzzy case
later iterations progressively increase graininess in high count boxes with
little impact on the likelihood of the overall image.

Now we will examine the reconstruction of parts of the overall image.
First an edge boundary question: what fraction of the counts are assigned
somewhere within the region with non-zero emissions. Since the reconstruction
preserves the total number of counts, all assignments outside this region are
in error. As seen in the upper section of Fig. 7, the Clean-Clean recovery is
excellent, with nearly 902 recovery by iteration 50. The Fuzzy sets were
poorer with only 622 for Fuzzy-Clean and 77% for Fuzzy-Fuzzy. However, most
of these counts were in areus of simulated high counts (corresponding to gas
hose and subject's lungs) and thus not of physiologic interest. Just
considering the important areas of non-gas tissue (not plotted), the fuzzy
sets were better: both recovered over 80% while the Clean Sim had about 60%.
Thus, it appears that the error-free process does a better job with the high
intensity areas and a poorer job with the low count rate regions of interest.
A similar observation has been made on error-free simulations in 2 dimensions
(28,29). Some of this comparison is artifact, however, as the Fuzzy Sim had a
substantial fraction of counts that were not assigned to any box. (For
generating reconstruction statistics we only use the 84% of the total data in
matrix S(b)).

The next concern is axial resolution: how successful was the
reconstruction in proper positioning of counts along the coordinate connecting

the two camera faces. In prior use of the WB method, we noticed that "hose"
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‘activity in level 7 was often incorrectly assigned to level 8, Figure 7

(lower panel) has the fraction of total counts assigned to levels 1l and 8,
where the simulation actually had none. 1In all 3 cases successive iterations
reduced this incorrect assignment. Best performance was again the
Clean-Clean, but the Fuzzy reconstruction achieved better axial resolution of
the Fuzzy data than did the Clean reconstruction. After 50 iterations, less
than 10%Z of the total counts were left in the originally empty levels 1 and 8.
Though more difficult to quantitate, other axial degradation features were not
as favorable with Fuzzy-Fuzzy. Specifically, the "lung" activity in levels
3,4 seemed to be more spread intc adjacent planes with Fuzzy-Fuzzy compared to
Fuzzy-Clean,

Image recovery in organ-sized regions of multiple boxes varied with
region. 1Two regions are reported in Fig 8. In the lung region (bottom, an
area of 42 boxes in levels 3 and 4 with an average of 85 counts per box
simulated), average recovery varied from about 60% to over 95% for the
different cases, with the Fuzzy-Fuzzy being the best. Many iterations were
required for that recovery, and actually the recovery was increasing even
after 50 iterations. In an area of more interest, the shoulder (top, an area
of 78 boxes in levels 2-4 with 5,6 counts per box simulated), recovery was
70-85% by 50 iterations. Again the Fuzzy-Fuzzy had greatest recovery, and
again the recovery increased steadily through at least 50 iterations (it
achieved 927 after 100 iterations). Other areas examined (but not presented
in figures) had a similar outcome: recovery of 50-150% of average simulated
counts, with most low-activity areas of interest recovering 80-125% and with
the best performance resulting in the Fuzzy-Fuzzy case.

Even with good recovery on average, deviations around the average were a

problem. Figure 9 shows the previously defined graininess for the same areas
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as in Fig. 8. As was seen in the simpler cbject, the graininess increased
progressively during the reconstruction. For the lung arca, the graininess
stabilized at slightly less than the original simulated level for Clean-Clean
and Fuzzy-Clean, while it continued to rise for Fuzzy-Fuzzy. In the case of
the shoulder, the increase was centinual through 50 iterations. For that
region of physiological interest, the Fuzzy-Fuzzy had barely exceeded its
original level by 50 iterations. As a general observation, the Ligh count
areas had less of a graininess problem with Clean-Clear: or Fuzzy-Clean
reconstructions, while the problem was least in low count areas for the
Fuzzy-Fuzzy image.

Finally, image recovery on the level of single image boxes was examined.
As with the simple object simulation, average recoveries increased with higher
emission density. Boxes with fewer than 20 counts were recovered very poorly
(10% or less of the original activity was assigned to those boxes by the
reconstruction algorithm) for Clean-Clean and Fuzzy-Clean, and almost as
poorly (2G-30%) for Fuzzy-Fuzzy. Higher activity areas did have a better
average recovery, but only above 100 counts per bex did the average reccvery
per box exceed 70%. We also examined how many boxes were recovered within the
approximate Poisson noise limits previously described. Again, no clear
dependence on count rate emerged, except for both Fuzzy simulations where
nearly all the high count areas were outside the nominal 90% band (only 10% of
boxes within band for 100+ counts). For other cases, 20-30% of the boxes were
within the band. Thus, as in the simple object reconstruction, overall
reconstructed noise was 3 to 4 times higher than expected from the original
Poisson counting error.
DISCUSSION

This exploration of positron image reconstruction was motivated by a
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specific application requiring maximum quantitative recovery of the data (18). °
A small amount of published information was available to answer the following
question: With these experimental data and a given reconstruction, how
reliable is the estimated count density in a single box, or in an average from
a small number of boxes?

Most reported reconstruction work is aimed at two-dimensional ring
devices. The typical application has 100+ counts per box and sufficient
overall data to average many hundred counts per detector tube. We had a
different imaging geometry, a low count rate so that the average counts per
detector "tube" was <1, and a structured emitter with a sixty-fold or greater
difference in emitter density.

In this environment, the ML approach was very attractive. It was based
on a solid statistical treatment of the data according to the known (Poisson)
distribution of the original photon emission. It allowed direct use of any
a priori physical, theoretical, or empirical calibration knowledge in the
reconstruction process. And it provided a single goodness-of-fit statistic
(the value ot the likelihood function itself) to judge "convergence" to a
stable "best" image.

In practice, the present implementation of the ML algorithm did not
provide a single perfect reconstruction solution. From both objects
simulated, we learmed that a continuously increasing likelihood is not a
continuously "better" image as judged by appearance, root-mean-square
statistics, or measures of graininess in the image. The divergence of
statistics 18 not particularly bothersome, since different statistical
criteria often give different sets of parameters, as happens when one changes
the weighting of the original data. Even after this analysis we accept that

the likelihood is the single best reconstruction performance parameter.
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More disturbing is the tendency of the algorithm to increase
point-to-point variability (graininess) with an apparently small increase in
likelihcod. Even if the algorithm was not so computationally intensive, it
would appear desirable to stop the process short of "convergence'". A recent
report on ML reconstruction of single photon images shows continued graininess
out to 10,000 iterations (27). In the more modest number of iterations
attempted here, image recovery is substantially complete by a few tens of
iterations. The use of the Fuzzy Recn here introduced an empirical feature
that would seem to encourage smcothing rather than graininess, and there was
some indications from the reconstructions that it did just that. At least, it
delayed the increase in graininess to higher iterations than we were able to
explore. At this point we still have no alternative to an arbitrary rule for
stopping the reconstruction; 50 iterations seems a reasonable choice for the
studies similar to the complex object simulated.

What final expectations can we have for applying this methodology to our
actual experimental data (18)? First, we should use the Fuzzy-Fuzzy
procedure, since ignoring the real known image degradation will produce
unnecessary image artifacts and compromise quantitative image recovery, Then,
we should expect the image to be unrealistically grainy, with an appearance of
larger point-to-point variation in isotope concentration than is likely to be
physically present. Finally, we expect that average count recovery will be
lower than the emission by approximately 50%, and that actual box
concentration estimates will vary by about a three-fold higher range than the
apparent Poisson counting error.

Is this a satisfactory method for our application? Probably not. The
areas of physiologic interest in our experiments (18) have activities of up to

50 counts per box, With results from the simulation, we might get images of
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about 25 counts and a variability of that same magnitude. Such imprecision »
would not allow the production of useful images where we would be interested

in point to point differences in isotope concentration in the body of less

than a factor of two. 1In trying to estimate kinetics, the total number of
counts available for analysis would be effectively higher, but not by an c¢rder
of magnitude. The problems with rapid isotopic decay already limit kinetic
interpretations in large regions emitting thousands of counts (18).

Additional uncertainties due to device characteristics ignored by our
calibration procedure (19), and due to physical effects of photon scattering
and attenuation - not considered in this simulation - would increase the final

uncertainty to unproductive levels,

32




e o

1.

REFERENCES

Brownell G.L., Correia, J.A., and Zamenhof, R.G., "Positron

Instrumentation." Recent Advances ir Nuclear Medicine, Vol. 5, pp. 1-49,

1978.
Chang, L.T., Macdonald, B., and Perez-Mendez, V., "Axial tomography anda

three dimensional image reconstruction." IEEE Transactions on Nuclear

Science, Vol. NS23, pp. 568-572, 1976.

Chu, G. and Tam, K-C, "Three-dimensicnal imaging in the posiiron camera

e~

using Fourier Techniques." Physics in Medicine and Riclogy, Vol. 2I, pp.

245-265, 1977.
Hoffman, E.J., Huang, S-C, Plummer, D., and Phelps, M.E., "Quantitation
in positron emission computed tomography: 6. Effect of nonuniform

resolution.”" Journal of Computer Assisted Tcmography, Vol. 6, pp.

987-999, 1982,
Lim, C.R., Cheng, A., and Boyd, D., "A fast iterative method for 3-D

positron image reconmstruction." American Nuclear Society Transactions

Vol. 26, pp. 154-155, 1977.
Macdonald, B., Lim, C.B., Perez-Mendez, V., and Tam, K.C., "A comparison
of three three-dimensional reconstruction methods for large-area positron

cameras." Journal of Computer Assisted Tomography, Vol. 2, pp. 642-643,

1978.
Ra, J.B., Lim, C.B,, Cho, Z.H., Hilal, S.K., and Correll, J., "A true
three~dimensional reconstruction algorithm for the spherical positron

emission tomograph." Physics in Medicine and B:lology, Vol. 27, pp. 37-50,

1982,
Tam, K-C, Perez-Mendez, V., and Macdonald, B., "3-D object reconstruction
in emission and transmission tomography with limited angular input." I1EEE

Transactions on Nuclear Science, Vol. NS-26, pp. 2797-26805, 1979.

33




10.

11.

12,

13.

14,

15.

16.

17.

Shepp, L.A. and Vardi, Y., "Maximum likelihood reconstruction for

emission tomography." IEEE Transactions on Medicine Imaging, Vol. MI-1,

pp. 113-122, 1982,
Shepp, I..A., Vardi, Y., Ra, J.B., Hilal, S.K., and Cho, Z.H., "Maximum

likelihood PET with real data.'" IEEE Transactions on Nuclear Science,

Vol. NS31, pp. 910-913, 1984.
Vardi, Y., Shepp, L.A., and Kaufman, L., "A statistical model for

positron emission tomography." Journal of the American Statistical

Association, Vol. 80, pp. 8-20, 1985.
Lange, K. and Carson, R., "EM reconstruction algorithms for emission and

transmission tomography." Journal of Computer Assisted Tomography, Vol.

8, pp. 306-316, 1984.
Llacer, J. and Meng, J.D., "Matrix-based image reconstruction methods for

tomography.'" IEFE Transactions on Nuclear Science, Vol. NS-32, pp.

855-864, 1985.
Cllinger, J.M. and Snyder, D.L., "A preliminary evaluation of the use of
the EM algorithm for estimating parzmeters in dynamic tracer studies."

IEEE Transactions on Nuclear Science, Vol. NS-32, pp. 848-854, 1985.

Snyder, D.L., "Parameter estimation for dynamic studies in

emission-tomography systems having list-mode data." I1EEE Transactions on

Nuclear Science, Vol. NS-31, pp. 925-931, 1984,

Herman, G.T., Censor, Y., Gordon, D., and Lewitt, R.M., "Comment (on

Ref.#11 above) Journal of the American Statistical Association, Vol. 80,

pPpP.22-25, 1985.
Carson, R.E., "A maximum likelihood method for region-of-interest

evaluation in emission tomography." Journal of Computer Assisted

Tomography, Vol. 10, pp. 654-663, 1986.

34




Weathersby P.K., Meyer, P,, Flynn, E.T., Homer, L.D., and Survanshi S.,

"Nitrogen gas exchange in the human knee." Journal of Applied Physiology.,

Vol. 61, pp. 1534-1545, 1986.

Weathersby, P.K., Survanshi, S., and Meyer, P., Robust spatial

calibration of a planar positron camera, Naval Medical Research

Institute Technical Report, No. 88~23, Bethesda, MD, 1988.
Lim, C.B., Cheng, A., Boyd, D.P., and Hattuner, R.S., "A 3-D iterative
reconstruction method for stationary planar positron cameras." IEEE

Transactions on Nuclear Science, Vol. NS-25, pp. 196-201. 1978.

Behrin, E., Positron/scintillation camera data acquisition and display

system, Lawrence Livermore Lab Report, No. UCRL-51288, Livermore, CA,
1972.
Weathersby, P.K., Survanshi, S., and Meyer, P., "Spatial sensitivity of a

planar positron camera." Nuclear Instruments and Methods, Vol. 220, pp.

571-574, 1984.
Nicholson, P.R., Thomas, J.M., and Watsou, C.R., "Characterization cf

PDP-11 pseudo-random unumber generators.' Proceedings of the DEC Users

Society, pp. 853-862, 1978.

Knuth, D.E. "The art of computer programming." Seminumerical Algorithms,

Vol. II, Chap. 3, Addison-Wesley, Reading MA, 1969.
Snyder, D.L. and Miller, M.I., "The use of sieves to stabilize images
produced with the EM algorithm for emission tomography." IEEE

Transactions on Nuclear Science, Vol. NS-32, pp. 3864-3872, 1985.

Weathersby, P.K. and Homer, L.D., "Solubility of gases in biological

fluids and tissues: a review." Undersea Biomedical Research, Vol. 7, pp.

277-296, 1980.

35




W -

Db o

27.

28.

29.

Floyd, C.E., Jaszczak, R.J., Coleman, R.E. "Convergence of the maximum
likelihood reconstruction algorithm for emission computed tomography."

Physics in Medicine and Biology, Vol. 32, pp. 463-476, 1987,

Llacer, J., Veklerov, E., and Hoffman, E.J. On the convergence of the

maximum likelihood method of tomographic image reconstruction. Lawrence

Berkeley Laboratory Report, No. LBL-21800, 1987 (also Proceedings of
Conferenece on Medical Imaging, SPIE v. 767, 1987).

Llacer, J. and Veklerov, E., The high sensitivity of the maximum

likelihood estimator method of tomographic image reconstruction.

Lawrence Berkeley Laboratory Report, No. LBL-21874, 1987 (also

Proceedings of Symposium on Computer Assisted Radiology (CAR'87) 1987).

36




